Вентилированое и отопление

Какой калорифер для приточной вентиляции выбрать?



Глоток свежего воздуха нужен и усердному работнику, и праздному домоседу. Впрочем, в зимнее время приточный воздух может быть чрезмерно свежим. Однако этот недостаток устраняет простейший нагревательный прибор — калорифер для приточной вентиляции, возвращающий комфортную температуру потоку свежего воздуха. 

Вентиляция

Приточная вентиляция загородного дома

Разновидности вентиляционных калориферов

В системах воздухообмена используют две разновидности калориферов, а именно:

  • Нагревательные приборы на электричестве.
  • Нагревательные приборы на жидких теплоносителях.

Электрический калорифер для приточной вентиляции – это очень эффективный, но чрезмерно энергозатратный отопительный прибор. Ведь повышение температуры приточного потока в данном случае происходит за счет контакта воздуха с раскаленными пластинами из тугоплавкого металла. Причем повышение температуры пластины происходит за счет электрического сопротивления нагревательных элементов, поглощающих десятки киловатт энергии. Впрочем, низкая энергоэфективность не умаляет других достоинств электрических калориферов – легкости процесса монтажа и компактности конструкции прибора.

Нагреватели второго типа – водяные или паровые калориферы —  повышают температуру приточного потока за счет передачи энергии теплоносителя, циркулирующего внутри радиатора этого прибора. Любой жидкостный калорифер — водяной для приточной вентиляции или  паровой для системы воздушного отопления – является эталоном  воздухонагревателя. Ведь жидкостный нагреватель воздуха не уступает по эффективность электрическому аналогу, одновременно демонстрируя и минимальное, по сравнению с электрическим калорифером, энергопотребление. Единственным недостатком подобного нагревательного прибора является относительно сложный монтаж.

Впрочем, эффективность любого калорифера зависит не только от технологии разогрева потока, но и от точных расчетов эксплуатационных характеристик нагревателей воздуха. Ведь ошибки в расчетах приведут к вызванному перегревом замыканию в электрическом калорифере или обмерзанию недостаточно теплого радиатора в жидкостном воздухонагревателе.

Расчёт калорифера вентиляции

Типовой расчет калорифера оперирует следующими параметрами:

Работа калорифера

Движение воздушного потока в калорифере

  • Тепловой мощностью нагревательного прибора – чем она больше, тем лучше. Однако с ростом мощности увеличивается и расход энергии, а, следовательно, и цена эксплуатации калорифера. Поэтому мощность не может быть бесконечно большой – для экономии средств владельца вентиляции она должна быть всего лишь достаточной для обогрева нужной порции воздуха.
  • Площадью нагревательного элемента – тут повторяется ситуация с мощностью. Вроде бы, чем больше площадь, тем лучше. Однако очень большой нагревательный элемент просто не поместится в воздуховоде и «съест» намного больше энергии, чем требуется. Поэтому площадь нагревателя должна соответствовать решаемой задаче – нагреву порции воздуха конкретного объема.
  • Объемным или массовым расходом приточного потока – это та самая порция воздуха, подаваемая на радиатор калорифера в единицу времени. Расход измеряется в кубических метрах или килограммах в час, минуту или секунду. Причем тут все однозначно – чем больше расход, тем дороже эксплуатация калорифера.
  • Температурой воздуха на входе и выходе из калорифера. Цена эксплуатации зависит от разницы температур. Ведь значительная разница температур вынуждает потреблять больше энергии, направленной на генерацию тепловой мощности калорифера.

Упомянутые выше параметры увязаны между собой следующим образом:

Расчёт мощности калорифера вентиляции (Q) происходит в процессе перемножения разницы температур (T1-T2) и массового расхода (G). Причем помимо этих множителей на результат произведения влияет целый ряд дополнительных коэффициентов. Поэтому финальная формула выглядит следующим образом

Q=0,278xCxGx(T1-T2),

где с – это теплоемкость атмосферного воздуха (в большинстве случаев она равна 1.005 кДж/кг °С). Причем T1 – это температура воздуха на выходе из калорифера, а T2 – это температура приточного потока на входе в нагревательный прибор.

Массовый расход (G) зависит от производительности приточного вентилятора (L) и плотности воздуха (P). Расчетная формула выглядит следующим образом –

G = LxP

То есть, чем больше кубических метров в час прокачает вентилятор, тем больше будет и массовый расход и тепловая мощность калорифера. Причем производительность вентилятора определяется потребностью насытить каждый квадратный метр площади обслуживаемого помещения 3 кубическими метрами воздуха в час.

Расчет

Проводим расчеты

Площадь сечения нагревательного элемента (A) определяется как результат деления   производительности вентилятора (L) и плотности воздуха (P) на скорость приточного потока в трубе (V). Расчетная формула выглядит следующим образом

A = LхP/3600хV

В свою очередь скорость зависит от производительности вентилятора и площади сечения воздуховода. Площадь нагревательных пластин в радиаторе или ТЭНе вычисляется по другой формуле

Ap=Qx1,2/Kx(Tt-Tv),

  • где К – это КПД калорифера, зависящее от типа нагревательного прибора,
  • Tt - это температура теплоносителя или пластины, а
  • Tv -это температура воздуха.

Оперируя данными параметрами, мы можем, во-первых, подобрать тип калорифера, во-вторых, оптимизировать тепловую мощность нагревательного прибора, и, в-третьих, уменьшить цену эксплуатации воздухонагревателя. Однако даже самые верные расчеты не помогут добиться оптимизации эксплуатационных характеристик калорифера в том случае, если этот нагревательный прибор будет инсталлирован в систему с грубыми нарушениями технологического процесса.

Монтаж калорифера в вентиляционную систему

Установка калорифера в приточную ветвь вентиляции предполагает подключение нагревательного прибора не только к воздуховоду, но и к источнику энергии – электропроводке или разводке системы отопления.

Причем в первом случае ошибку в монтаже можно допустить лишь намеренно. Ведь калорифер «включается» в сеть точно так же, как и любой другой электроприбор.

Узел обвязки

Узел обвязки калорифера

Однако  в этом деле есть свои нюансы:

  • Во-первых, электрический калорифер необходимо оборудовать автоматом, защищающим сеть от возможного короткого замыкания или «пробоя» на линии подачи энергии к пластинам.
  • Во-вторых, калорифер придется защищать от перегрева, используя датчики контроля температуры, отключающие питание при разогреве пластины выше граничной температуры.
  • В-третьих, калорифер нуждается в заземлении, нивелирующем угрозу безопасности жильцов или персонала помещения, обслуживаемого приточной вентиляцией с подогревом.

Монтаж нагревательных приборов на жидких теплоносителях – это более сложная операция. Основные затруднения в этом случае вызывает обвязка калорифера для приточной вентиляции. А точнее качество данной операции.

Причем калорифер можно «увязать» с разводкой двумя способами:

  • С помощью двухходового вентиля – простого решения, которое не дает возможности контролировать обратный расход теплоносителя.
  • С помощью трехходового вентиля – более сложного узла, позволяющего совмещать калорифер, бойлер и котел.

При этом качество проделанной работы зависит не только от сложности узла распределения теплоносителя, но и от навыков специалиста, подключающего калорифер в систему. Ведь даже один негерметичный стык может спровоцировать падение тепловой мощности и дальнейшее обледенение радиатора. Поэтому монтаж водяных калориферов доверяют только опытным профессионалам, причем даже их работу принято контролировать самым тщательным образом.





Также советуем посмотреть:





Расчет мощности кондиционера онлайн

Расчет теплопотерь помещения

Расчет вентиляции помещения